Copied to
clipboard

G = C23.26D18order 288 = 25·32

2nd non-split extension by C23 of D18 acting via D18/C18=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.26D18, (C2×C36)⋊6C4, (C2×C4)⋊4Dic9, C36.39(C2×C4), C4⋊Dic917C2, (C22×C4).9D9, C94(C42⋊C2), (C4×Dic9)⋊15C2, (C2×C12).374D6, (C2×C4).102D18, C4.15(C2×Dic9), C18.16(C4○D4), C6.86(C4○D12), C18.24(C22×C4), (C22×C12).27S3, (C22×C36).10C2, (C2×C18).44C23, C12.45(C2×Dic3), (C2×C12).18Dic3, (C22×C6).138D6, C2.4(D365C2), C2.5(C22×Dic9), C22.5(C2×Dic9), (C2×C36).112C22, C18.D4.5C2, C3.(C23.26D6), C6.25(C22×Dic3), C22.22(C22×D9), (C22×C18).36C22, (C2×Dic9).38C22, (C2×C18).35(C2×C4), (C2×C6).40(C2×Dic3), (C2×C6).201(C22×S3), SmallGroup(288,136)

Series: Derived Chief Lower central Upper central

C1C18 — C23.26D18
C1C3C9C18C2×C18C2×Dic9C4×Dic9 — C23.26D18
C9C18 — C23.26D18
C1C2×C4C22×C4

Generators and relations for C23.26D18
 G = < a,b,c,d,e | a2=b2=c2=1, d18=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=d17 >

Subgroups: 328 in 114 conjugacy classes, 68 normal (22 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C2×C4, C23, C9, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C18, C18, C18, C2×Dic3, C2×C12, C2×C12, C22×C6, C42⋊C2, Dic9, C36, C2×C18, C2×C18, C2×C18, C4×Dic3, C4⋊Dic3, C6.D4, C22×C12, C2×Dic9, C2×C36, C2×C36, C22×C18, C23.26D6, C4×Dic9, C4⋊Dic9, C18.D4, C22×C36, C23.26D18
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C4○D4, D9, C2×Dic3, C22×S3, C42⋊C2, Dic9, D18, C4○D12, C22×Dic3, C2×Dic9, C22×D9, C23.26D6, D365C2, C22×Dic9, C23.26D18

Smallest permutation representation of C23.26D18
On 144 points
Generators in S144
(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)
(1 120)(2 121)(3 122)(4 123)(5 124)(6 125)(7 126)(8 127)(9 128)(10 129)(11 130)(12 131)(13 132)(14 133)(15 134)(16 135)(17 136)(18 137)(19 138)(20 139)(21 140)(22 141)(23 142)(24 143)(25 144)(26 109)(27 110)(28 111)(29 112)(30 113)(31 114)(32 115)(33 116)(34 117)(35 118)(36 119)(37 107)(38 108)(39 73)(40 74)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 81)(48 82)(49 83)(50 84)(51 85)(52 86)(53 87)(54 88)(55 89)(56 90)(57 91)(58 92)(59 93)(60 94)(61 95)(62 96)(63 97)(64 98)(65 99)(66 100)(67 101)(68 102)(69 103)(70 104)(71 105)(72 106)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 25)(8 26)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 33)(16 34)(17 35)(18 36)(37 55)(38 56)(39 57)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(73 91)(74 92)(75 93)(76 94)(77 95)(78 96)(79 97)(80 98)(81 99)(82 100)(83 101)(84 102)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(109 127)(110 128)(111 129)(112 130)(113 131)(114 132)(115 133)(116 134)(117 135)(118 136)(119 137)(120 138)(121 139)(122 140)(123 141)(124 142)(125 143)(126 144)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 60 138 76)(2 41 139 93)(3 58 140 74)(4 39 141 91)(5 56 142 108)(6 37 143 89)(7 54 144 106)(8 71 109 87)(9 52 110 104)(10 69 111 85)(11 50 112 102)(12 67 113 83)(13 48 114 100)(14 65 115 81)(15 46 116 98)(16 63 117 79)(17 44 118 96)(18 61 119 77)(19 42 120 94)(20 59 121 75)(21 40 122 92)(22 57 123 73)(23 38 124 90)(24 55 125 107)(25 72 126 88)(26 53 127 105)(27 70 128 86)(28 51 129 103)(29 68 130 84)(30 49 131 101)(31 66 132 82)(32 47 133 99)(33 64 134 80)(34 45 135 97)(35 62 136 78)(36 43 137 95)

G:=sub<Sym(144)| (37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108), (1,120)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,127)(9,128)(10,129)(11,130)(12,131)(13,132)(14,133)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,141)(23,142)(24,143)(25,144)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,107)(38,108)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90)(57,91)(58,92)(59,93)(60,94)(61,95)(62,96)(63,97)(64,98)(65,99)(66,100)(67,101)(68,102)(69,103)(70,104)(71,105)(72,106), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,60,138,76)(2,41,139,93)(3,58,140,74)(4,39,141,91)(5,56,142,108)(6,37,143,89)(7,54,144,106)(8,71,109,87)(9,52,110,104)(10,69,111,85)(11,50,112,102)(12,67,113,83)(13,48,114,100)(14,65,115,81)(15,46,116,98)(16,63,117,79)(17,44,118,96)(18,61,119,77)(19,42,120,94)(20,59,121,75)(21,40,122,92)(22,57,123,73)(23,38,124,90)(24,55,125,107)(25,72,126,88)(26,53,127,105)(27,70,128,86)(28,51,129,103)(29,68,130,84)(30,49,131,101)(31,66,132,82)(32,47,133,99)(33,64,134,80)(34,45,135,97)(35,62,136,78)(36,43,137,95)>;

G:=Group( (37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108), (1,120)(2,121)(3,122)(4,123)(5,124)(6,125)(7,126)(8,127)(9,128)(10,129)(11,130)(12,131)(13,132)(14,133)(15,134)(16,135)(17,136)(18,137)(19,138)(20,139)(21,140)(22,141)(23,142)(24,143)(25,144)(26,109)(27,110)(28,111)(29,112)(30,113)(31,114)(32,115)(33,116)(34,117)(35,118)(36,119)(37,107)(38,108)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,81)(48,82)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90)(57,91)(58,92)(59,93)(60,94)(61,95)(62,96)(63,97)(64,98)(65,99)(66,100)(67,101)(68,102)(69,103)(70,104)(71,105)(72,106), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,25)(8,26)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(37,55)(38,56)(39,57)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(73,91)(74,92)(75,93)(76,94)(77,95)(78,96)(79,97)(80,98)(81,99)(82,100)(83,101)(84,102)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(109,127)(110,128)(111,129)(112,130)(113,131)(114,132)(115,133)(116,134)(117,135)(118,136)(119,137)(120,138)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,60,138,76)(2,41,139,93)(3,58,140,74)(4,39,141,91)(5,56,142,108)(6,37,143,89)(7,54,144,106)(8,71,109,87)(9,52,110,104)(10,69,111,85)(11,50,112,102)(12,67,113,83)(13,48,114,100)(14,65,115,81)(15,46,116,98)(16,63,117,79)(17,44,118,96)(18,61,119,77)(19,42,120,94)(20,59,121,75)(21,40,122,92)(22,57,123,73)(23,38,124,90)(24,55,125,107)(25,72,126,88)(26,53,127,105)(27,70,128,86)(28,51,129,103)(29,68,130,84)(30,49,131,101)(31,66,132,82)(32,47,133,99)(33,64,134,80)(34,45,135,97)(35,62,136,78)(36,43,137,95) );

G=PermutationGroup([[(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108)], [(1,120),(2,121),(3,122),(4,123),(5,124),(6,125),(7,126),(8,127),(9,128),(10,129),(11,130),(12,131),(13,132),(14,133),(15,134),(16,135),(17,136),(18,137),(19,138),(20,139),(21,140),(22,141),(23,142),(24,143),(25,144),(26,109),(27,110),(28,111),(29,112),(30,113),(31,114),(32,115),(33,116),(34,117),(35,118),(36,119),(37,107),(38,108),(39,73),(40,74),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,81),(48,82),(49,83),(50,84),(51,85),(52,86),(53,87),(54,88),(55,89),(56,90),(57,91),(58,92),(59,93),(60,94),(61,95),(62,96),(63,97),(64,98),(65,99),(66,100),(67,101),(68,102),(69,103),(70,104),(71,105),(72,106)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,25),(8,26),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,33),(16,34),(17,35),(18,36),(37,55),(38,56),(39,57),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(73,91),(74,92),(75,93),(76,94),(77,95),(78,96),(79,97),(80,98),(81,99),(82,100),(83,101),(84,102),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(109,127),(110,128),(111,129),(112,130),(113,131),(114,132),(115,133),(116,134),(117,135),(118,136),(119,137),(120,138),(121,139),(122,140),(123,141),(124,142),(125,143),(126,144)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,60,138,76),(2,41,139,93),(3,58,140,74),(4,39,141,91),(5,56,142,108),(6,37,143,89),(7,54,144,106),(8,71,109,87),(9,52,110,104),(10,69,111,85),(11,50,112,102),(12,67,113,83),(13,48,114,100),(14,65,115,81),(15,46,116,98),(16,63,117,79),(17,44,118,96),(18,61,119,77),(19,42,120,94),(20,59,121,75),(21,40,122,92),(22,57,123,73),(23,38,124,90),(24,55,125,107),(25,72,126,88),(26,53,127,105),(27,70,128,86),(28,51,129,103),(29,68,130,84),(30,49,131,101),(31,66,132,82),(32,47,133,99),(33,64,134,80),(34,45,135,97),(35,62,136,78),(36,43,137,95)]])

84 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G···4N6A···6G9A9B9C12A···12H18A···18U36A···36X
order12222234444444···46···699912···1218···1836···36
size111122211112218···182···22222···22···22···2

84 irreducible representations

dim11111122222222222
type++++++-+++-++
imageC1C2C2C2C2C4S3Dic3D6D6C4○D4D9Dic9D18D18C4○D12D365C2
kernelC23.26D18C4×Dic9C4⋊Dic9C18.D4C22×C36C2×C36C22×C12C2×C12C2×C12C22×C6C18C22×C4C2×C4C2×C4C23C6C2
# reps1222181421431263824

Matrix representation of C23.26D18 in GL4(𝔽37) generated by

1000
0100
0010
00036
,
36000
03600
0010
0001
,
1000
0100
00360
00036
,
33000
30900
00240
00020
,
282200
3900
00016
00300
G:=sub<GL(4,GF(37))| [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,36],[36,0,0,0,0,36,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,36,0,0,0,0,36],[33,30,0,0,0,9,0,0,0,0,24,0,0,0,0,20],[28,3,0,0,22,9,0,0,0,0,0,30,0,0,16,0] >;

C23.26D18 in GAP, Magma, Sage, TeX

C_2^3._{26}D_{18}
% in TeX

G:=Group("C2^3.26D18");
// GroupNames label

G:=SmallGroup(288,136);
// by ID

G=gap.SmallGroup(288,136);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,120,422,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^18=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^17>;
// generators/relations

׿
×
𝔽